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1. Introduction

The Polyakov loop plays a relevant theoretical role in QCD at finite temperature. It repre-

sents the propagator of a static test quark and therefore it is crucial in the understanding

of the confinement-deconfinement crossover. In [1, 2] it was related to a heavy quark free

energy so its vanishing in quenched QCD signals the confinement phase. As noted by ’t

Hooft [3], gluodynamics at finite temperature formulated using the imaginary time formal-

ism, has an extra discrete global symmetry, in addition to usual gauge invariance. This

symmetry is spontaneously broken above the deconfinement phase transition [4, 5]. The

Polyakov loop, L(T ), is a natural order parameter for such phase transition; under periodic

gauge transformations L is an invariant object but under a ’t Hooft transformation it picks

up a factor which is an element of the center of the gauge group. Effective field theories for

the Polyakov loop have been proposed in [6]. (For a comprehensive review see e.g. ref. [7]).

The smooth Wilson loops, and in particular the Polyakov loop, are composite opera-

tors. Their perturbative renormalizability was discussed in [8 – 11], finding the remarkable

result that they are multiplicatively renormalizable, without mixing with other operators.

Soon afterwards, the perturbative evaluation of the Polyakov loop was addressed by Gava

and Jengo [12] within dimensional regularization, to next-to-leading order (NLO). After

including finite temperature vacuum polarization effects through Debye mass insertion, the
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leading order term turns out to be O(g3) instead of the naively expected O(g2). Their result

implies that at high enough temperatures the renormalized Polyakov loop should approach

unity from above, a consequence of the non trivial factor introduced by the renormalization.

(The expectation value of the bare Polyakov loop vanishes in the continuum limit in any

phase.) Not much progress has been achieved after this early result. At present there are

no perturbative calculations of the expectation value of the Polyakov loop beyond NLO.

As noted in [12] a direct calculation would have to confront the proliferation of Feynman

diagrams due to infrared divergences [13]. A different approach, related to the dimensional

reduction technique, is discussed below.

On the non perturbative side, the bare Polyakov loop has often been studied numeri-

cally within lattice gauge theory calculations, however, a reliable definition and calculation

of the renormalized Polyakov loop has been achieved only recently. The method intro-

duced in ref. [14] for quenched QCD obtains the Polyakov loop as a byproduct of the heavy

quark-antiquark potential at finite temperature, obtained from the correlation between two

Polyakov loops at different separations. Comparison with the zero temperature potential

for small separations allows a quite precise determination of the quark selfenergy to be

removed and so of the Polyakov loop. The renormalized Polyakov loop is larger than unity

for temperatures at and above 3Tc, in agreement with the perturbative expectation. The

same technique has been applied to two flavor QCD in [15]. A direct lattice calculation of

the Polyakov loop has also been reported in ref. [16] using a different approach. In this case

a single Polyakov loop is used. Comparison of data taken at different temperatures allows

to determine the renormalization factor to be applied to the bare result. The results of

these two approaches agree approximately near the phase transition, but for temperatures

above 1.3Tc the behaviors turn significantly different. The differences could be due to the

effects of finite lattice spacing or to ambiguities in the renormalization prescription.

High temperatures probe kinematical regions which up to the manifest breaking of the

Lorentz invariance correspond to large Euclidean momenta in the zero temperature quan-

tum field theory. In dimensional regularization in the MS scheme one finds that to a given

temperature T there corresponds an Euclidean scale µ ∼ 4πT [17], so that Tc = 270MeV

means µ = 3GeV. In this regime one expects Operator Product Expansion (OPE) ideas to

apply and more specifically, at not too high temperatures, condensates and power correc-

tions should play a role. Actually, following some older proposals [18], phenomenological

requirements [19], theoretical studies [20] and lattice analyses [21 – 23] there has recently

been mounting evidence that the lowest condensate order BRST invariant condensate is of

dimension 2. Such a condensate is generally non-local but in the Landau gauge becomes

the local operator 〈A2
µ,a〉, with Aµ,a the gluon field. Also the 〈A2

0〉 condensate appears as

a parameter in the calculation of the pressure at finite temperature [24].

In this work we investigate the role of condensates on the expectation value of the

Polyakov loop. The Polyakov loop is closely related to the thermal expectation value

of tr(A2
0) (the NLO perturbative result can be obtained in this way) and so condensate

contributions to this quantity would have immediate impact on the Polyakov loop. Our mo-

tivation is best exposed by drawing an analogy with the zero temperature quark-antiquark

potential in quenched QCD. The potential is, of course, closely related to the correla-
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tion function of two thermal Wilson lines. The perturbative regime of the potential V (r)

corresponds to small separations, where the potential is approximately Coulombian. At

separations of the order of 1/ΛQCD (there is no other scale in gluodynamics) a linearly

confining term develops and starts becoming dominant. Both pieces of the potential evolve

under the renormalization group at a logarithmically slow rate. Therefore, modulo radia-

tive corrections, the dimensionless quantity rV (r) is composed of a flat perturbative piece

plus a power-like term of the type Λ2
QCDr2 which is non perturbative. In analogy, at high

temperatures, we can consider the behavior of the dimensionless quantity 〈tr(A2
0)〉/T

2,

also directly related to the correlation function of two thermal Wilson lines. The analo-

gous of the scale r in the previous case is the scale 1/T here, and certainly for large T the

quantity 〈tr(A2
0)〉/T

2 is perturbative and flat modulo a logarithmic dependence. At lower

temperatures we contemplate the possibility of non perturbative power-like terms of the

type Λ2
QCD/T 2 to develop. As we show in this work, such term enters naturally through

OPE corrections to the gluon propagator driven by condensates. An analysis of available

lattice data turns out to display precisely the power-like pattern expected from the previ-

ous considerations. The pattern is followed in the deconfinement phase from the highest

temperatures available down to near to the transition where deviations start to show up.

The paper is organized as follows. In section 2 we discuss perturbative aspects of the

Polyakov loop and the use of dimensional reduction to attempt the calculation beyond

NLO. In section 3 we show that the presence of condensates introduce a power-like pattern

in the logarithm of the Polyakov loop expectation value. In section 4 we analyze the lattice

data and show that they are fairly well described as a composition of perturbative plus

condensate contributions. Finally, in section 5 we summarize our conclusions.

2. The perturbative Polyakov loop

2.1 Perturbative results

The (expectation value of the) Polyakov loop is defined as

L(T ) =

〈

1

Nc
tr P

(

eig
R 1/T
0

dx0A0(x,x0)
)

〉

(2.1)

where 〈 〉 denotes vacuum expectation value, tr is the (fundamental) color trace, and

P denotes path ordering. A0 is the gluon field in the (Euclidean) time direction, A0 =
∑

TaA0,a, Ta being the Hermitian generators of the SU(Nc) Lie algebra in the fundamental

representation, with the standard normalization tr(TaTb) = δab/2.

As a composite operator the Polyakov loop is subject to renormalization. The mul-

tiplicative renormalizability of the Polyakov loop was established in refs. [8 – 11] in the

context of perturbation theory. Gava and Jengo [12] addressed the perturbative compu-

tation of L(T ) in pure gluodynamics. The calculation was carried out to NLO, which

corresponds to O(g4), using dimensional regularization and in the Landau gauge. The

result is of course gauge invariant. Explicitly,

L(T ) = 1 +
1

16π

N2
c − 1

Nc
g2 mD

T
+

N2
c − 1

32π2
g4

(

log
mD

2T
+

3

4

)

+ O(g5) . (2.2)
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Here mD is the Debye mass, which controls the screening of chromoelectric modes in the

plasma. To one loop [25]

mD = gT (Nc/3 + Nf/6)1/2 , (2.3)

Nc being the number of colors and Nf the number of flavors, to account for dynami-

cal quarks. The coupling constant g runs with the temperature following the standard

renormalization group analysis and one expects (2.2) to hold for high enough tempera-

ture. Remarkably, L(T ) turns out to be larger than unity implying that the renormalized

Polyakov loop is not a unimodular matrix. Note that mD contains a g and so the first non

trivial contribution to L is O(g3), due to the infrared structure of the theory, rather than

the naively expected O(g2). Note also that the perturbative result (as well as mD) has a

well defined large Nc limit, with ’t Hooft prescription of keeping g2Nc fixed.

2.2 Dimensional reduction

The result just quoted is rather old yet no higher order computations are presently available.

Most efforts in perturbative high temperature QCD have been addressed to obtain the

pressure and only recently such computations have been taken to their highest possible

perturbative order [26], using dimensional reduction ideas [27, 28, 25, 29, 30]. In order to

subsequently include possible contributions from condensates, we will presently reproduce

the lowest order perturbative result for L(T ) using the dimensional reduction approach. In

addition this will allow us to discuss properties of higher order perturbative contributions

to L(T ).

The starting point is the Euclidean QCD action (Dµ = ∂µ−ig0Aµ, Fµν = ig−1
0 [Dµ,Dν ],

Nf massless fermions)

LQCD =
1

2
tr(F 2

µν) + ψ̄ D/ ψ + Lgf+gh+ct , (2.4)

where Lgf+gh+ct accounts for gauge fixing and ghost terms as well as the counterterms

for renormalization. Next, one proceeds to integrate out the fermionic modes and all non

stationary gluon modes, which become very heavy at high temperature. This results in

an effective theory for the remaining stationary (time-independent) gluon modes Aµ(x),

described by a three dimensional action
∫

d3xL3(x). To one loop and in the Landau gauge

one obtains [17, 31, 30, 32]

TL3(x) = m2
D tr(A2

0) +
g4(µ)

4π2
(tr(A2

0))
2 +

g4(µ)

12π2
(Nc − Nf ) tr(A4

0)

+
g2(µ)

g2
E(T )

tr([Di, A0]
2) +

g2(µ)

g2
M (T )

1

2
tr(F 2

ij) + TδL3 (2.5)

where g(µ) is the running coupling constant in the MS scheme (to be used in the Debye

mass and in the Polyakov loop formula too)

1

g2(µ)
= 2β0 log(µ/ΛMS) , β0 = (11Nc/3 − 2Nf/3)/(4π)2 (2.6)
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and

1

g2
E(T )

=
1

g2(µ)
− 2β0(log(µ/4πT ) + γE) +

1

3(4π)2
(Nc + 8Nf (log 2 − 1/4)) ,

1

g2
M (T )

=
1

g2(µ)
− 2β0(log(µ/4πT ) + γE) +

1

3(4π)2
(−Nc + 8Nf log 2) . (2.7)

The remainder δL3 contains operators of mass dimension 6 and higher. In addition there

are higher loop terms and constant (field independent) terms which would be relevant for

the pressure. (Note that gE and gM are not to be confused with the coupling constants

under the same name appearing, e.g., in [33].)

At lowest order we will only need the mass term and the kinetic energy term of the

chromoelectric field (first and fourth terms respectively in eq. (2.5)). It will be convenient

to work with a rescaled A0 field equal to g(µ)/gE(T ) times the MS A0 field. To all effects,

including the Debye mass and the Polyakov loop formula which depends on the product

gA0, this is equivalent to using the new A0 field together with gE(T ) as coupling constant.

The latter will be denoted g(T ) or just g from now on,

L3(x) =
m2

D

T
tr(A2

0) +
1

T
tr([Di, A0]

2) + · · · , (2.8)

1

g2(T )
= 2β0 log(T/ΛE) ,

with

ΛE =
ΛMS

4π
exp

(

γE −
Nc + 8Nf (log 2 − 1/4)

22Nc − 4Nf

)

. (2.9)

For computing the QCD pressure one can use any gauge fixing to integrate the non

stationary modes. This is an intermediate step to carry out the integration of the remaining

modes. Consequently covariant gauges are often used as they are computationally simpler.

For the Polyakov loop computation the situation is different; static gauges are preferred to

covariant ones [25]. A static gauge is one in which A0(x) is brought to be time independent

by means of a suitable gauge transformation. In such a gauge eq. (2.1) becomes

L =
1

Nc

〈

tr eigA0(x)/T
〉

. (2.10)

i.e., L depends only on the stationary mode of A0 and so no information is lost on the

Polyakov loop operator if the non stationary modes are integrated out. Unfortunately,

the necessary perturbative computations of e.g. L3(x), are only available for covariant

gauges. Only in a static gauge the stationary mode A0(x) coincides with the logarithm

of the Polyakov loop operator. Therefore, in a covariant gauge the effective action of the

stationary mode is insufficient to recover Polyakov loop expectation values1. Nevertheless,

as we discuss below, the gauge dependence only affects beyond NLO and the two coefficients

in eq. (2.2) are reproduced using the formulas in, for instance, [33, 26] and the method

explained in the next subsection.

1Using the stationary mode in eq. (2.10) amounts to removing the path ordering operator in the definition

of the Polyakov loop, rendering it a gauge dependent quantity.
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Figure 1: The renormalized Polyakov loop versus the temperature, in gluodynamics. Lattice data

from [14]. Perturbative LO and NLO results are shown for comparison. The curve follows from a

fit of the parameter b in eq. (4.4).

Doing a series expansion of L(T ) in eq. (2.10) one gets

L(T ) = 1 −
g2

2T 2

1

Nc
〈tr(A2

0)〉 +
g4

24T 4

1

Nc
〈tr(A4

0)〉 + · · · . (2.11)

tr(A0) vanishes identically while the other terms of odd order are assumed to vanish due

to the QCD conjugation symmetry, Aµ(x) → −AT
µ (x). The leading contribution is then

attached to 〈tr(A2
0)〉. This quantity has dimensions of mass squared and so it would

vanish in a perturbative calculation at zero temperature. At finite temperature instead it

should scale as T 2 modulo slowly varying radiative corrections. Let D00(k)δab denote the

momentum space propagator for the canonically normalized fields T−1/2A0,a(x), then

〈A2
0,a〉 = (N2

c − 1)T

∫

d3k

(2π)3
D00(k) . (2.12)

To lowest order the three dimensional propagator is

DPert
00 (k) =

1

k
2 + m2

D

, (2.13)

where the upperscript Pert indicates that it is a perturbative contribution. When this is

inserted in (2.12) it yields (we apply dimensional regularization rules)

〈A2
0,a〉

Pert = −(N2
c − 1)

TmD

4π
. (2.14)

This result used in eq. (2.11) (and using tr(A2
0) = A2

0,a/2) reproduces the perturbative

value of L(T ) to O(g3).

In figure 1 we compare the perturbative L(T ) in eq. (2.2) with a recent lattice de-

termination of this quantity in pure gluodynamics and Nc = 3 [14]. As we can see, in
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the high temperature region, T about 6Tc, the L(T )-lattice is larger than unity, as pre-

dicted by the perturbative calculation, moreover the numerical value is also consistent with

perturbation theory. The agreement quickly deteriorates as the critical temperature is ap-

proached from above; while the lattice data moves downwards, to eventually displaying a

phase transition, the perturbative curve increases slightly. As expected, the perturbative

result is slowly varying with temperature, the variation coming from logarithmic radiative

corrections.

2.3 Higher perturbative orders

Let us now discuss higher order perturbative contributions to L(T ). The renormalizable

pieces of the three dimensional Lagrangian are of the form

Lren
3 =

1

2
tr(F 2

ij) + tr([Di,A0]
2) + m2 tr(A2

0) + λ1(tr(A
2
0))

2 + λ2 tr(A4
0) (2.15)

with A0 ∼ T−1/2A0, m ∼ gT , and λ1 ∼ λ2 ∼ g4T . In addition, Di = ∂i − ig3Ai with

Ai ∼ T−1/2Ai and g3 ∼ T 1/2g. For Nc = 2 or Nc = 3 the λ2 term is redundant and one can

set λ2 = 0. The vacuum energy density of this theory, f(g3,m, λ1), has been computed to

four loops in [26], with g3, m and λ1 as independent parameters. This allows to compute

〈A2
0〉 and 〈A4

0〉 by taking derivatives of f with respect to m2 and λ1 respectively, to obtain

a perturbative estimate of the Polyakov loop. The general structure of the vacuum energy

density is as follows [26]

f(g3,m, λ1) =
∑

`≥1

`−1
∑

k=0

f`k m4−`g2k
3 λ`−k−1

1 (2.16)

where ` denotes the number of loops and the coefficients f`k depend logarithmically on m.

Consequently, for the quantities in the expansion of L(T ) one finds

g2

T 2
〈tr(A2

0)〉 ∼
g2

T

∂f(g3,m, λ1)

∂m2
∼

∑

`≥1

3
∑̀

n=`+2

gn ,

g4

T 4
〈tr(A4

0)〉 ∼
g4

T 2

∂f(g3,m, λ1)

∂λ1
∼

∑

`≥2

3
∑̀

n=`+4

gn . (2.17)

As can be seen from these formulas, the first missing contribution to L(T ) would be O(g7)

from ` = 5 in the 〈tr(A2
0)〉 term. The lowest contribution from 〈tr(A4

0)〉 at 5 loops is O(g9)

and that from 〈tr(A6
0)〉, not available from the computation, would first start at O(g9)

at 3 loops. So in principle, one could extend the perturbative result for L(T ) to O(g6).

Unfortunately, the matching relations which connect m, g3 and λ1 to the four dimensional

QCD parameters are only available in covariant gauges for which the relation (2.10) does

not apply. In particular, the ratio g(µ)/gE(T ) used above is gauge dependent at O(g2)

from two loop contributions, this would introduce a gauge dependence at O(g5) in L(T ).

On the other hand, the non renormalizable terms δL3 ought to be examined as well to

determine to which perturbative order they start contributing to L(T ). The leading such
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terms are schematically of the type [31, 32]

δL3 =
g2

T 2
tr([Di, Fµν ]2) +

g3

T 3/2
tr(F 3

µν) +
g4

T
tr(A2

0F
2
µν) . (2.18)

Using the effective relation Di ∼ gT , the first term amounts to an O(g4) correction to the

kinetic energy, so it starts contributing at O(g7) as a correction to the LO. The other terms

are effectively of higher order.

Numerically the terms O(g5) +O(g6) computed with the available matching relations

do not make a substantial contribution as they are qualitatively and also quantitatively

similar to those in [12]. Again the radiative nature of these perturbative terms produces a

rather flat logarithmic dependence with the temperature in sharp contrast with the lattice

data at not too high temperatures. This reinforces the need of non perturbative effects.

2.4 Gaussian ansatz

It is noteworthy that the contribution from 〈A4
0〉 starts at O(g6), and so to O(g5) A0 obeys

a Gaussian distribution. That is, to this order one can replace (2.10) with

L = exp

[

−
g2〈A2

0,a〉

4NcT 2

]

(2.19)

and so

〈A2
0,a〉

Pert = −
N2

c − 1

4π
mDT −

Nc(N
2
c − 1)

8π2
g2T 2

(

log
mD

2T
+

3

4

)

+ O(g3) . (2.20)

This formula holds also in the unquenched theory, since to this order Nf only appears

through the Debye mass.

The Gaussian ansatz becomes correct O(g5) at high enough temperature where the

theory becomes weakly interacting due to asymptotic freedom. Also, it becomes exact in

the large Nc limit as higher order connected expectation values are suppressed by powers of

1/Nc. Note that A2
0,a scales as (N2

c −1) and so L has a well defined limit with the standard

prescription of keeping g2Nc finite as Nc → ∞. A Gaussian distribution for the Polyakov

loop has been observed in lattice calculations [34]. The Gaussian ansatz is in fact equivalent

to expanding the exponential, averaging over color degrees of freedom and finally invoking

the vacuum saturation hypothesis (〈A2k
0 〉 = (2k−1)!!〈A2

0〉
k) routinely applied in QCD sum

rules at zero temperature. In this line, the Wilson loop was discussed in ref. [35] by using the

standard dimension 4 gluon condensate yielding for small contours a term proportional to

the area squared of the contour. The situation has been revisited in ref. [36] in the context

of dimension 2 condensates yielding an area law for small contours. This agrees with the

observation in ref. [19] that dimension 2 condensates, effectively would-be tachyonic gluon

masses, provide the short range signature of long range confining forces.

3. Condensate contributions to the Polyakov loop

As shown in figure 1 the perturbative contributions to the Polyakov loop expectation value

describe only the region of very high temperature. This situation is reminiscent of what

– 8 –
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happens for the heavy quark-antiquark potential in QCD at zero temperature, as a func-

tion of the quark-antiquark separation. There, perturbation theory describes well the short

distance region, where the theory is weakly interacting and standard one-gluon exchange

produces a Coulomb-like potential. At larger distances confinement sets in and a linear

potential must be added to account for the lattice data [37]. As the potential has dimen-

sions of mass, the Coulomb piece does not need a dimensionful coefficient. This makes

it allowable in perturbation theory, where ΛQCD can only appear through logarithmic ra-

diative corrections, as in eq. (2.6). On the other hand, the linear confining piece of the

potential requires a dimension two coefficient, the string tension, which in pure gluodynam-

ics should be Λ2
QCD times a numerical coefficient. At one loop this implies a dependence

exp(−1/β0g
2(µ)), the scale µ being related to the quark-antiquark separation r. While

such contributions are perfectly possible in QCD, they are clearly beyond any finite or-

der in perturbative QCD and can only be attained through suitable resummations of the

perturbative series (see e.g. [38, 39]). It is noteworthy that the non perturbative depen-

dence on g is not completely arbitrary, namely, it is such that ΛQCD appears raised to

positive integer powers. This finds a natural explanation from the OPE approach, where

the non perturbative contributions are driven by condensates of concrete local operators.

By dimensional counting, the condensate contributions carry a corresponding negative

power momentum dependence, so they are subdominant at high momentum as compared

to the purely perturbative terms but become more important at lower momenta, the lower

dimensional operators being the dominant ones. In this line the confining piece of the

zero temperature heavy quark-antiquark potential has been addressed phenomenologically

by considering the contribution to the gluon propagator of a dimension two condensate,

namely, 〈A2
µ〉 in the Landau gauge [18]. Just by dimensional counting such term produces

a linearly confining term in the potential [19].

In this work we want to investigate the effect of low dimensional condensates on the

Polyakov loop expectation value. The region of high temperatures is weakly interacting

and so ideas inspired on the high momentum region of the zero temperature theory might

be useful here. As shown above, at high temperatures, the Polyakov loop is closely related

to the expectation value of A2
0 in a static gauge. Perturbatively, such quantity necessarily

scales as T 2, but non perturbatively a further term proportional to Λ2
QCD is allowed. In

order to account for non perturbative contributions coming from condensates, we will

consider adding to the propagator new phenomenological pieces driven by positive mass

dimension parameters. Specifically, we consider

D00(k) = DPert
00 (k) + DNonPert

00 (k) (3.1)

with the non perturbative term

DNonPert
00 (k) =

m2
G

(k2 + m2
D)2

. (3.2)

Such ansatz parallels those made at zero temperature in the presence of condensates [18, 19].
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This new piece produces a non perturbative contribution to 〈A2
0〉, namely,

〈A2
0,a〉

NonPert =
(N2

c − 1)Tm2
G

8πmD
. (3.3)

If we assume that mG is temperature independent up to radiative corrections, the con-

densate will also be temperature independent, modulo these corrections. Equivalently, in

terms of the condensate

DNonPert
00 (k) =

8π

N2
c − 1

mD

T

〈A2
0,a〉

NonPert

(k2 + m2
D)2

. (3.4)

Note that a positive condensate 〈A2
0,a〉

NonPert indicates a would-be tachyonic gluon mass

−m2
G, as in [19].

Adding the two contributions to 〈A2
0,a〉 in eq. (2.19), one obtains

−2 log L =
g2〈A2

0,a〉
Pert

2NcT 2
+

g2〈A2
0,a〉

NonPert

2NcT 2
. (3.5)

The fact that, modulo radiative corrections (including running of the coupling and anoma-

lous dimensions), 〈A2
0,a〉

Pert scales as T 2 while 〈A2
0,a〉

NonPert is temperature independent,

suggests rewriting the previous formula as [40]

−2 log L = a + b

(

Tc

T

)2

(3.6)

where the parameters a and b are expected to have only a weak temperature dependence.

As advertised the non perturbative piece introduces a power-like dependence in the tem-

perature which is not present in the perturbative calculation.

4. Comparison with lattice data

4.1 Results in gluodynamics

A reliable determination of the renormalized Polyakov loop in lattice gauge theory has been

undertaken only recently in ref. [14], for pure gluodynamics and Nc = 3. This calculation is,

of course, fully non perturbative. These authors compute the finite temperature correlation

function of a heavy quark-antiquark pair for different separations. The two Polyakov loops

are multiplicatively renormalized by extracting the (temperature dependent but separation

independent) quark self energy in such a way that at short distances the standard zero

temperature quark-antiquark potential is reproduced. At large separations the (squared)

renormalized Polyakov loop is then obtained. That is, if Px denotes the renormalized

Polyakov loop operator located at x,

〈PxPy〉 = e−c(T )〈P bare
x P bare

y 〉 = e−Fq̄q(r,T )/T −→
r→∞

L2(T ) . (4.1)

Motivated by the pattern in eq. (3.6), the lattice data for −2 log L(T ) are displayed

versus (Tc/T )2 in figure 2. As we can see the lattice data follow a nearly straight line. This

– 10 –
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Figure 2: The logarithmic dependence of the renormalized Polyakov loop in gluodynamics versus

the inverse temperature squared in units of the critical temperature. Lattice data from [14]. The

fits use eq. (3.6) with a and b adjustable constants and lattice data above 1.03 Tc for Nτ = 4 and

Nτ = 8. Purely perturbative LO and NLO results for Nf = 0 are shown for comparison.

pattern is clearly distinguishable from the much flatter dependence predicted by the pertur-

bative calculation, and unequivocally shows a temperature power correction characteristic

of a dimension 2 condensate.

Identification of (3.6) with the formula (3.5) yields the relations

a = −
1

8π

N2
c − 1

Nc
g2 mD

T
−

N2
c − 1

16π2
g4

(

log
mD

2T
+

3

4

)

+ O(g5) , (4.2)

g2〈A2
0,a〉

NonPert = 2NcT
2
c b . (4.3)

A fit of the lattice data of the form

−2 log L = aNLO + b

(

Tc

T

)2

(4.4)

with the perturbative value of a to NLO and b as a free constant parameter, yields

b =

{

2.20(6) ,

2.14(4) ,
χ2/DOF =

{

0.75 , Nτ = 4 ,

1.43 , Nτ = 8 .
(4.5)

This corresponds to the following value for the condensate

g2〈A2
0,a〉

NonPert =

{

(0.98 ± 0.02GeV)2 , Nτ = 4 ,

(0.97 ± 0.01GeV)2 , Nτ = 8 .
(4.6)

In the fit we include lattice data for temperatures 1.03Tc or above. We use Tc/ΛMS =

1.14(4) [41, 37], and Tc = 270(2) MeV [41]. Throughout this section we use the running

coupling constant obtained from the beta function to three loops and ΛE in eq. (2.9) as

– 11 –
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scale parameter. Assuming that the difference between the two lattice results is entirely

due to finite cutoff effects, and assuming further that the corresponding leading effect goes

as 1/Nτ , we obtain the estimate (0.95(4)GeV)2 for g2〈A2
0,a〉

NonPert in the continuum limit.

We have also considered a fit of the lattice data with both a and b treated as free

constant parameters. This produces

a =

{

−0.27(5) ,

−0.23(1) ,
b =

{

1.81(13) ,

1.72(5) ,
χ2/DOF =

{

1.07 , Nτ = 4 ,

0.45 , Nτ = 8 .
(4.7)

The values of χ2/DOF are slightly better than the NLO prediction of a. Obviously the

identification of a with the perturbative result will work better at high temperatures. Using

eq. (4.2) we obtain for the highest temperature 6Tc

aNLO = −0.22(1) (T = 6Tc) , (4.8)

in qualitative agreement with the fitted values. Note that for this temperature the non

perturbative power correction does contribute at the few percent level. For lower tem-

peratures the NLO perturbative result evolves faster than the fit suggests. At this level

of accuracy one should also take into account logarithmic corrections to the value of the

condensate and eventually some anomalous dimension correction to the condensate. The

present data do not allow a clean extraction of such fine details. The average value we get

for the condensate with constant a is

g2〈A2
0,a〉

NonPert =

{

(0.89 ± 0.03GeV)2 , Nτ = 4 ,

(0.87 ± 0.02GeV)2 , Nτ = 8 ,
(4.9)

a little lower than before. The corresponding continuum limit estimate results in

g2〈A2
0,a〉

NonPert = (0.84(6)GeV)2.

We have attempted to determine the coefficient of a possible 1/T 4 correction, append-

ing formula (3.6) with a term c(Tc/T )4. When we fit the lattice data for Nτ = 8, this

results in

b = 2.18(20) , c = −0.04 ± 0.24 , (4.10)

with χ2/DOF = 1.89, where we have considered the perturbative value of a to NLO, and

a = −0.22(2) , b = 1.61(24) , c = 0.13 ± 0.28 , (4.11)

with χ2/DOF = 0.42, if we treat a as a free constant. The value of c is compatible

with zero in any case, and the errors overlap with central values for a and b of eqs. (4.5)

and (4.7) respectively. More accurate data are desirable in order to identify contributions

from condensates of dimension 4.

It is noteworthy that a fit to the data completely excludes the existence of a term of

the form 1/T in log(L(T )). Such term would not have a theoretical basis, as no dimension

one condensate exists. However, as noted by the authors of [14], there is a ambiguity in

their procedure, which corresponds to adding a constant to the zero temperature quark-

antiquark potential. Such ambiguity translates into an additive ambiguity in Fq̄q(r, T ) in

eq. (4.1), which would give rise a term of the type 1/T in log(L(T )). The absence of

such term indicates a preference for the Cornell prescription adopted in [14], namely, in

Vq̄q(r) ∼ v0/r + v1 + v2r to choose v1 = 0 [42].

– 12 –
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Figure 3: The logarithmic dependence of the renormalized Polyakov loop in unquenched QCD with

two flavors versus the inverse temperature squared in units of the critical temperature. Lattice data

from [15]. The fits use eq. (3.6) with a and b adjustable constants and data above 1.15 Tc. Purely

perturbative LO and NLO results for Nf = 2 are shown for comparison.

4.2 Relation with zero temperature condensates

Although our determination is based on a static gauge, it is tempting to compare with the

zero temperature condensate g2〈A2
µ,a〉 obtained in the Landau gauge in quenched QCD.

There, one obtains from the gluon propagator (2.4 ± 0.6GeV)2 [21], from the symmetric

three-gluon vertex (3.6 ± 1.2GeV)2 [21], and from the tail of the quark propagator (2.1 ±

0.1GeV)2 [22] and (3.0 − 3.4GeV)2 [23]. At zero temperature all Lorentz components are

sampled suggesting a conversion factor of 4 from g2〈A2
µ,a〉 to g2〈A2

0,a〉, but according to [18],

in the Landau gauge the total condensate scales as D − 1, D being the Euclidean space

dimension, suggesting instead a conversion factor of 3. Within the uncertainties of the

lattice data as well as the theoretical ambiguities, the agreement is remarkable, as the two

quenched results refer to different temperatures and gauges. Finite temperature results for

the pressure in pure gluodynamics [24, 43] yield a value (0.93(7)GeV)2 for g2〈A2
0,a〉

NonPert,

indicating an overall coherent picture.2

4.3 Unquenched results

The renormalized Polyakov loop has also been computed in the unquenched case, using

the technique described above, in ref. [15] for two flavor QCD. The lattice data are shown

in figure 3, and they corresponds to Nτ = 4. In this case, the data fall onto a straight

line for temperatures 1.15Tc or above. Closer to the transition temperature the data start

departing from the pattern (3.6), indicating the need of a richer description as the transition

2This value has been obtained from lattice data shown in figure 2 of ref. [24], and also from figure 1 of

ref. [43], in the temperature region used in our fits.
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is approached from above. A fit to the data above 1.15Tc using aNLO yields

b = 2.99(12) , g2〈A2
0,a〉

NonPert = (0.86 ± 0.02GeV)2 , (4.12)

with χ2/DOF = 1.87. We have used Tc/ΛMS = 0.77(9) with Tc = 202(4) MeV [44] and

ΛMS = 261(31) MeV [45]. The fit has been done with equal weight to all data points and

the value of χ2 quoted corresponds to a representative error ±0.05 in 2 log L(T ), which

similar to that for the quenched case.

A fit with a and b as free parameters gives

a = −0.31(6) , b = 2.19(13) , g2〈A2
0,a〉

NonPert = (0.73 ± 0.03GeV)2 , (4.13)

with χ2/DOF = 0.25. As in the quenched case, the value of a is consistent with the

perturbative value at high temperature

aNLO = −0.35(2) (T = 6Tc) . (4.14)

The lattice data show a departure from the linear pattern for temperatures closer to

the transition than 1.15Tc. Such departure is not well described by adding new condensates

of higher dimension and we have been unable to extract a condensate of dimension 4 from

the data. We quote here the result of appending a term c(Tc/T )4 in eq. (4.4). The fit

of the data above 1.0Tc gives b = 2.44(21) and c = 1.07(19) with χ2/DOF = 12.8. The

coefficients b and c are highly correlated.

4.4 Further quenched lattice data

Alternative lattice determinations of the renormalized Polyakov loop in pure gluodynamics

have been addressed more recently in [16]. These authors follow a different approach

as compared to that in [14]. They use single Polyakov loops which are multiplicatively

renormalized by extraction of the quark selfenergy. The latter is determined by isolating

the cutoff dependent pieces by comparison of different lattice sizes at the same temperature.

Unfortunately the results of both approaches differ qualitatively, specially for temperatures

above 1.3Tc. This is shown in figure 4 where the two lattice data sets are compared.

The origin of the discrepancy between the results obtained with the two approaches

is presently not clear, although lattice artifacts, in particular finite lattice spacing effects,

are not completely excluded in [16] as a possible explanation. (Of course, there is also the

possibility that after closer scrutiny the two definitions used by the two groups correspond

really to different renormalized operators.)

In our view the results in [14] would be the more reliable ones because the method used

is technically simpler and amenable to tests. Indeed, the authors are able to verify that for

small separations of the two Polyakov loops the standard zero temperature potential is very

accurately reproduced as a function of r for all temperatures. This is achieved after a single

(temperature dependent) global shift is made, to remove the quark selfenergies; this is the

quantity c(T ) in eq. (4.1). The contact between the zero and finite temperature potentials

is complete for all separations between zero and a T dependent radius r(T ) related to

the Debye mass, thereby allowing a quite precise determination of the counterterm c(T )
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for each temperature. In addition, as noted above, the calculations are carried out for two

different lattice sizes, Nτ = 4 and Nτ = 8 (and also Nτ = 16 in [42]), and the results for the

renormalized Polyakov show very small cutoff dependence, implying that the continuum

limit has been reached.

The method in [16] is technically more difficult to implement (quoting the authors, “In

practice, our method is not quite so trivial”) since it requires comparing different lattice

sizes at the same physical temperature. Also the subtraction of counterterms is more

involved, since, using perturbation theory as guidance, the analogous of c(T ) is expressed

as power series of T with coefficients to be fitted to the bare Polyakov loop data. On the

other hand, from the point of view of the model proposed in the present work, we expect

non perturbative corrections to be negligible at the highest temperatures considered in the

two lattice calculations and only the data in [14] seem to be consistent with perturbation

theory [12] at those temperatures.

The method in [16] renormalizes the logarithm of the bare Polyakov loop by using the

scheme

− log Lbare(T ) = fdivNτ + f ren + f latN−1
τ (4.15)

where Nτ is the lattice temporal size, and so Nτ = Λ/T , Λ being the inverse lattice spacing,

i.e. the lattice cutoff. As said, the data in [16] deviate from those in [14], and in particular,

do not follow the pattern (3.6) for log(L). Let us make a speculation assuming that either

the removal of the cutoff dependent pieces has not been complete or that after removal

of the those pieces, finite renormalization terms of the same type as the subtracted ones

remain in the renormalized data of [16].3 Specifically, let us assume that the data follow

the pattern

−2 log L = aNLO + b

(

Tc

T

)2

+ δa−1
Tc

T
+ δa + δa1

T

Tc
. (4.16)

Actually, we find that the data above 1.3Tc can fairly well be accounted for by using this

pattern. This is shown in figure 4. Remarkably, the central value of the slope b turns out

to be close to that found previously with the other set of data. However, the best fit has

large error bars due to the abundance of parameters available.

δa = 1.8 ± 1.8 , b = 1.4 ± 2.6 ,

δa−1 = −1.0 ± 3.8 , δa1 = −0.29 ± 0.26 , (4.17)

with χ2/DOF = 0.0349.

Similar remarks apply to the fit

−2 log L = a + b

(

Tc

T

)2

+ δa−1
Tc

T
+ δa + δa1

T

Tc
, (4.18)

3Of course, one could also ask whether the result in [14] are not contaminated by finite cutoff effects

too, and in particular, whether the linear pattern displayed in figure 4 is not just the consequence of a huge

cutoff effect of the type Λ2/T 2 instead of Λ2
QCD/T 2 as proposed in this work. This is unlikely, first because

the values of the cutoff Λ in [14] are much larger than ΛQCD and second, because the renormalized results

are consistent for different lattice sizes, Nτ = 4 and Nτ = 8.
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Figure 4: The logarithmic dependence of the renormalized Polyakov loop versus the inverse tem-

perature squared in units of the critical temperature. Lattice data from [14, 16]. The fits use

eq. (3.6) with a and b adjustable constants for the first set of data [14], and eq. (4.18) for the

second one [16].

although in this case a and δa cannot be determined independently. This gives

a + δa = 1.6 ± 1.8 , b = 1.3 ± 2.6 ,

δa−1 = −1.4 ± 3.8 , δa1 = −0.28 ± 0.26 , (4.19)

with χ2/DOF = 0.0350.

We find encouraging that the value of the condensate approximately agrees using the

two different lattice data sets. Nevertheless, this speculation is not completely conclusive

and an agreement between the results of both lattice groups would be needed before further

consequences could be extracted.

5. Conclusions

There are two main results of our study. First, when suitably analyzed, the lattice data of

the renormalized Polyakov loop above the deconfinement phase transition show unequivo-

cally the existence of a non perturbative dimension 2 condensate. Such contributions have

not been considered before but they are in fact dominant and allow to describe the data

in [14] down to temperatures as close to the transition as 1.03Tc for pure gluodynamics

and 1.15Tc for two flavors. Furthermore, the numerical value obtained from the Polyakov

loop is quite consistent with the value of g2〈A2
0,a〉

NonPert extracted from the pressure in

gluodynamics.

We have suggested identifying this condensate with the BRST invariant dimension 2

gluon condensate. Our second finding is that, for pure gluodynamics, the numerical value

of the condensate 〈A2
0,a〉

NonPert, defined in a static gauge and extracted from Polyakov loop

data above the deconfinement transition, is remarkably close to the naive estimate 〈A2
µ,a〉/4,
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measured at zero temperature and in the Landau gauge. These results pose the theoretical

challenge of establishing the connection outlined in this paper on a firmer ground. In this

light the analogy between the zero temperature potential and the Polyakov loop noted in

the introduction has been pushed forward in [46] by showing that the model in eq. (3.1)

predicts a relation between the string tension and the slope of the Polyakov loop that is

empirically satisfied.

The simple shape L2(T ) = e−a−b(Tc/T )2 yields L → 0 as T → 0, but does not describe

the deconfinement phase transition. The closest analogy to such transition would be near

the inflexion point of L2(T ), which takes place at a temperature Ti = (2b/3)1/2Tc. This

Ti would agree with Tc for a universal geometrical value b = 3/2, which not far from the

values obtained in this work from quenched QCD lattice data. Nevertheless, this approxi-

mate coincidence can only be taken as an estimate since the concrete value of the inflexion

point depends on whether L2(T ) or L(T ) is used, for instance. It is noteworthy that

the same shape can also be obtained within the instanton approach at finite temperature

along the lines of [47]. The relation between instantons and dimension 2 gluon conden-

sates at zero temperature was suggested in [48] and fruitfully exploited in recent lattice

simulations to extract, via cooling techniques, the infrared behavior of the running cou-

pling constant [49]. In this regard, it might be rather interesting to isolate the purely non

perturbative instantonic contributions on the lattice and determine whether, after cooling,

the shape e−(a+b(Tc/T )2)/2 extends also below the phase transition.
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